
max7301 Documentation
Release stable

Feb 07, 2022

Contents:

1 Introduction 3

2 Installation 5
2.1 Download . 5
2.2 Installation . 5

3 Usage 7
3.1 Configuration . 7
3.2 Communication . 8
3.3 Shutdown . 8
3.4 Transition detection . 8
3.5 Low level functions . 9

4 Example sketch 11

5 Contributors 13

i

ii

max7301 Documentation, Release stable

This library provides an interface for the Arduino to the MAX7301 GPIO port expander.

Please see ReadTheDocs for the latest documentation.

Contents: 1

https://github.com/jfjlaros/max7301/graphs/commit-activity
https://max7301.readthedocs.io/en/latest
https://github.com/jfjlaros/max7301/releases
https://github.com/jfjlaros/max7301/releases
https://github.com/jfjlaros/max7301
https://github.com/jfjlaros/max7301
https://github.com/jfjlaros/max7301
https://raw.githubusercontent.com/jfjlaros/max7301/master/LICENSE.md
https://www.arduino.cc
https://max7301.readthedocs.io/en/latest/index.html

max7301 Documentation, Release stable

2 Contents:

CHAPTER 1

Introduction

The MAX7301 compact, serial-interfaced I/O expander (or general-purpose I/O (GPIO) peripheral) pro-
vides microprocessors with up to 28 ports. Each port is individually user configurable to either a logic
input or logic output.

Each port can be configured either as a push-pull logic output capable of sinking 10mA and sourcing
4.5mA, or a Schmitt logic input with optional internal pullup. Seven ports feature configurable transition
detection logic, which generates an interrupt upon change of port logic level. The MAX7301 is controlled
through an SPI-compatible 4-wire serial interface.

—From the MAX7301 datasheet.

This library provides an API interface to the MAX7301. Additionally, an example sketch is included for serial com-
munication with a host computer and an example host script is included for controlling the MAX7301.

3

https://datasheets.maximintegrated.com/en/ds/MAX7301.pdf
usage.html
example.html
https://github.com/jfjlaros/max7301/blob/master/device/src/device.ino
https://github.com/jfjlaros/max7301/blob/master/host/host.py

max7301 Documentation, Release stable

4 Chapter 1. Introduction

CHAPTER 2

Installation

In this section we cover retrieval of the latest release or development version of the code and subsequent installation.

2.1 Download

2.1.1 Latest release

Navigate to the latest release and either download the .zip or the .tar.gz file.

Unpack the downloaded archive.

2.1.2 From source

The source is hosted on GitHub, to install the latest development version, use the following command.

git clone https://github.com/jfjlaros/max7301.git

2.2 Installation

2.2.1 Arduino IDE

In the Arduino IDE, a library can be added to the list of standard libraries by clicking through the following menu
options.

• Sketch

• Import Library

• Add Library

To add the library, navigate to the downloaded folder and select the subfolder named max7301.

5

https://github.com/jfjlaros/max7301/releases/latest
https://github.com/jfjlaros/max7301

max7301 Documentation, Release stable

• Click OK.

Now the library can be added to any new project by clicking through the following menu options.

• Sketch

• Import Library

• max7301

2.2.2 Ino

Ino is an easy way of working with Arduino hardware from the command line. Adding libraries is also easy, simply
place the library in the lib subdirectory.

cd lib
git clone https://github.com/jfjlaros/max7301.git

6 Chapter 2. Installation

http://inotool.org

CHAPTER 3

Usage

In this section we describe how to configure and use the API library.

3.1 Configuration

Include the header file and make a global class instance, i.e., put it outside of any function at the top of the sketch. The
constructor of this class takes five variables:

position description abbreviation
1 clock pin CLK
2 data in pin DIN
3 data out pin DOUT
4 chip select pin CS
5 chip type

The chip type should be true for the MAX7301AAX, false otherwise.

type pins value
MAX7301AAX 36 true
MAX7301ANI 28 false
MAX7301AAI 28 false

If, for example, we have the clock, data in, data out and chip select on pins 4, 5, 6 and 7 respectively and our chip is of
type MAX7301ANI, initialise the class instance as follows:

#include <max7301.h>

MAX7301 max7301(4, 5, 6, 7, false);

After initialisation, the MAX7301 is in shutdown mode. Use the enable() function to make it enter normal opera-
tion mode. This is typically done in the setup() function.

7

max7301 Documentation, Release stable

max7301.enable();

Pins can be configured by using the pinMode() function which takes the pin number and a mode as arguments.

mode description
GPIO_OUTPUT logic output
GPIO_INPUT logic input
GPIO_INPUT_PULLUP logic input with internal pullup

For example, configure pin 12 as an input with the internal pullup resistor enabled and pin 22 as an output:

max7301.pinMode(12, GPIO_INPUT_PULLUP);
max7301.pinMode(22, GPIO_OUTPUT);

The pin configuration can be queried with the getPinMode() function.

byte result = max7301.getPinMode(12); // Should return GPIO_INPUT_PULLUP.

3.2 Communication

The functions digitalRead() and digitalWrite() can be used to read from a pin, or write to a pin.

byte result = max7301.digitalRead(12);
max7301.digitalWrite(22, HIGH);

The functions digitalReadRange() and digitalWriteRange() can be used to read from up to 8 consecu-
tive pin at once. The first parameter indicates the first pin in the range. The pin states are encoded in one byte with the
pin with the lowest number in its least significant position.

byte result = max7301.digitalReadRange(12); // Read pin 12-19.
max7301.digitalWriteRange(22, 0x01); // Set pin 22 HIGH and 23-29 LOW.

3.3 Shutdown

The MAX7301 can be put in shutdown mode with the disable() function. In this mode, all pins are set to input
and the pullup resistors are turned off.

max7301.disable();

3.4 Transition detection

The MAX7301 is capable of transition detection on pins 24 to 30. If a transition is detected, pin 31 will go high.

To set this up, the pins must be configured correctly with the pinMode() function and the input pins must be
registered for active monitoring with the configureTransitionDetection() function.

First make sure pin 31 is configured as an output pin.

8 Chapter 3. Usage

max7301 Documentation, Release stable

max7301.pinMode(31, GPIO_OUTPUT);

To configure pin 24 as input:

max7301.pinMode(24, GPIO_INPUT);
max7301.configureTransitionDetection(24, true);

Finally, activate transition detection with the enableTransitionDetection() function. This function must be
called after every transition event to reenable transition detection.

max7301.enableTransitionDetection();

Transition detection can be disabled with the disableTransitionDetection() function.

3.5 Low level functions

Registers can be read with the read() function and written to with the write() function. The first parameter is the
address of the register.

byte result = max7301.read(0x09); // First port configuration register.
max7301.write(0x09, 0x55); // Set port 4-7 to output.

3.5. Low level functions 9

max7301 Documentation, Release stable

10 Chapter 3. Usage

CHAPTER 4

Example sketch

In this sketch, we demonstrate the different capabilities of the MAX7301. We connect two buttons and one LED.

• Button 1 is connected to a normal input pin (12).

• Button 2 is connected to an input pin with transition detection (24).

• The LED is connected to pin 22.

Fig. 1: Schema for the test setup, see the MAX7301 datasheet for full installation instructions.

After compiling and uploading the sketch, connect the Arduino to a USB port and run the host side script.

python host.py

This script checks the state of button 1 every second. If it is pressed at the moment of checking, a short pulse will
be send to the LED. Note that if the button was pressed and released between two consecutive checks, nothing is
registered. Furthermore, if the button is pressed for a longer period, multiple pulses will be send to the LED.

For button 2, the script checks whether a transition has occurred every second and sends three short pulses to the
LED if this has happened. This transition will be registered even if the button is pressed and released between two
consecutive checks. Also, the release of the button is registered as a transition, so the LED will flash upon release of
this button as well.

11

https://github.com/jfjlaros/max7301/blob/master/device/src/device.ino
https://datasheets.maximintegrated.com/en/ds/MAX7301.pdf
https://github.com/jfjlaros/max7301/blob/master/host/host.py

max7301 Documentation, Release stable

12 Chapter 4. Example sketch

CHAPTER 5

Contributors

• Jeroen F.J. Laros (Original author, maintainer)

Find out who contributed:

git shortlog -s -e

13

	Introduction
	Installation
	Download
	Installation

	Usage
	Configuration
	Communication
	Shutdown
	Transition detection
	Low level functions

	Example sketch
	Contributors

