

MAXIM 7301 GPIO port expander

[image: _images/max7301.svg]
 [https://github.com/jfjlaros/max7301/graphs/commit-activity][image: _images/df4189e586fb1523274e0b45a59553ffdda224d1.svg]
 [https://max7301.readthedocs.io/en/latest][image: _images/max73011.svg]
 [https://github.com/jfjlaros/max7301/releases][image: _images/max73012.svg]
 [https://github.com/jfjlaros/max7301/releases][image: _images/max73013.svg]
 [https://github.com/jfjlaros/max7301][image: _images/max73014.svg]
 [https://github.com/jfjlaros/max7301][image: _images/max73015.svg]
 [https://github.com/jfjlaros/max7301][image: _images/max73016.svg]
 [https://raw.githubusercontent.com/jfjlaros/max7301/master/LICENSE.md]

This library provides an interface for the Arduino [https://www.arduino.cc] to the MAX7301 GPIO port
expander.

Please see ReadTheDocs [https://max7301.readthedocs.io/en/latest/index.html] for the latest documentation.

Contents:

	Introduction

	Installation
	Download

	Installation

	Usage
	Configuration

	Communication

	Shutdown

	Transition detection

	Low level functions

	Example sketch

	Contributors

Introduction

The MAX7301 compact, serial-interfaced I/O expander (or general-purpose I/O
(GPIO) peripheral) provides microprocessors with up to 28 ports. Each port
is individually user configurable to either a logic input or logic output.

Each port can be configured either as a push-pull logic output capable of
sinking 10mA and sourcing 4.5mA, or a Schmitt logic input with optional
internal pullup. Seven ports feature configurable transition detection
logic, which generates an interrupt upon change of port logic level. The
MAX7301 is controlled through an SPI-compatible 4-wire serial interface.

—From the MAX7301 datasheet [https://datasheets.maximintegrated.com/en/ds/MAX7301.pdf].

This library provides an API interface to the MAX7301. Additionally, an
example sketch [https://github.com/jfjlaros/max7301/blob/master/device/src/device.ino] is included for serial communication with a host computer and an
example host script [https://github.com/jfjlaros/max7301/blob/master/host/host.py] is included for controlling the MAX7301.

Installation

In this section we cover retrieval of the latest release or development version
of the code and subsequent installation.

Download

Latest release

Navigate to the latest release [https://github.com/jfjlaros/max7301/releases/latest] and either download the .zip or the
.tar.gz file.

Unpack the downloaded archive.

From source

The source is hosted on GitHub [https://github.com/jfjlaros/max7301], to install the latest development version, use
the following command.

git clone https://github.com/jfjlaros/max7301.git

Installation

Arduino IDE

In the Arduino IDE, a library can be added to the list of standard libraries by
clicking through the following menu options.

	Sketch

	Import Library

	Add Library

To add the library, navigate to the downloaded folder and select the
subfolder named max7301.

	Click OK.

Now the library can be added to any new project by clicking through the
following menu options.

	Sketch

	Import Library

	max7301

Ino

Ino [http://inotool.org] is an easy way of working with Arduino hardware from the command line.
Adding libraries is also easy, simply place the library in the lib
subdirectory.

cd lib
git clone https://github.com/jfjlaros/max7301.git

Usage

In this section we describe how to configure and use the API library.

Configuration

Include the header file and make a global class instance, i.e., put it outside
of any function at the top of the sketch. The constructor of this class takes
five variables:

	position

	description

	abbreviation

	1

	clock pin

	CLK

	2

	data in pin

	DIN

	3

	data out pin

	DOUT

	4

	chip select pin

	CS

	5

	chip type

	

The chip type should be true for the MAX7301AAX, false otherwise.

	type

	pins

	value

	MAX7301AAX

	36

	true

	MAX7301ANI

	28

	false

	MAX7301AAI

	28

	false

If, for example, we have the clock, data in, data out and chip select on pins
4, 5, 6 and 7 respectively and our chip is of type MAX7301ANI, initialise the
class instance as follows:

#include <max7301.h>

MAX7301 max7301(4, 5, 6, 7, false);

After initialisation, the MAX7301 is in shutdown mode. Use the enable()
function to make it enter normal operation mode. This is typically done in the
setup() function.

max7301.enable();

Pins can be configured by using the pinMode() function which takes the pin
number and a mode as arguments.

	mode

	description

	GPIO_OUTPUT

	logic output

	GPIO_INPUT

	logic input

	GPIO_INPUT_PULLUP

	logic input with internal pullup

For example, configure pin 12 as an input with the internal pullup resistor
enabled and pin 22 as an output:

max7301.pinMode(12, GPIO_INPUT_PULLUP);
max7301.pinMode(22, GPIO_OUTPUT);

The pin configuration can be queried with the getPinMode() function.

byte result = max7301.getPinMode(12); // Should return GPIO_INPUT_PULLUP.

Communication

The functions digitalRead() and digitalWrite() can be used to read from
a pin, or write to a pin.

byte result = max7301.digitalRead(12);
max7301.digitalWrite(22, HIGH);

The functions digitalReadRange() and digitalWriteRange() can be used to
read from up to 8 consecutive pin at once. The first parameter indicates the
first pin in the range. The pin states are encoded in one byte with the pin
with the lowest number in its least significant position.

byte result = max7301.digitalReadRange(12); // Read pin 12-19.
max7301.digitalWriteRange(22, 0x01); // Set pin 22 HIGH and 23-29 LOW.

Shutdown

The MAX7301 can be put in shutdown mode with the disable() function. In
this mode, all pins are set to input and the pullup resistors are turned off.

max7301.disable();

Transition detection

The MAX7301 is capable of transition detection on pins 24 to 30. If a
transition is detected, pin 31 will go high.

To set this up, the pins must be configured correctly with the pinMode()
function and the input pins must be registered for active monitoring with the
configureTransitionDetection() function.

First make sure pin 31 is configured as an output pin.

max7301.pinMode(31, GPIO_OUTPUT);

To configure pin 24 as input:

max7301.pinMode(24, GPIO_INPUT);
max7301.configureTransitionDetection(24, true);

Finally, activate transition detection with the enableTransitionDetection()
function. This function must be called after every transition event to reenable
transition detection.

max7301.enableTransitionDetection();

Transition detection can be disabled with the disableTransitionDetection()
function.

Low level functions

Registers can be read with the read() function and written to with the
write() function. The first parameter is the address of the register.

byte result = max7301.read(0x09); // First port configuration register.
max7301.write(0x09, 0x55); // Set port 4-7 to output.

Example sketch

In this sketch [https://github.com/jfjlaros/max7301/blob/master/device/src/device.ino], we demonstrate the different capabilities of the MAX7301. We
connect two buttons and one LED.

	Button 1 is connected to a normal input pin (12).

	Button 2 is connected to an input pin with transition detection (24).

	The LED is connected to pin 22.

[image: Schema]
Schema for the test setup, see the MAX7301 datasheet [https://datasheets.maximintegrated.com/en/ds/MAX7301.pdf] for full installation
instructions.

After compiling and uploading the sketch, connect the Arduino to a USB port and
run the host side script [https://github.com/jfjlaros/max7301/blob/master/host/host.py].

python host.py

This script checks the state of button 1 every second. If it is pressed at the
moment of checking, a short pulse will be send to the LED. Note that if the
button was pressed and released between two consecutive checks, nothing is
registered. Furthermore, if the button is pressed for a longer period, multiple
pulses will be send to the LED.

For button 2, the script checks whether a transition has occurred every second
and sends three short pulses to the LED if this has happened. This transition
will be registered even if the button is pressed and released between two
consecutive checks. Also, the release of the button is registered as a
transition, so the LED will flash upon release of this button as well.

Contributors

	Jeroen F.J. Laros (Original author, maintainer)

Find out who contributed:

git shortlog -s -e

Index

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone.

Our Standards

Examples of behaviour that contributes to creating a positive environment
include:

	Using welcoming and inclusive language.

	Being respectful of differing viewpoints and experiences.

	Gracefully accepting constructive criticism.

	Focusing on what is best for the community.

	Showing empathy towards other community members.

Examples of unacceptable behaviour by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances.

	Trolling, insulting/derogatory comments, and personal or political attacks.

	Public or private harassment.

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission.

	Other conduct which could reasonably be considered inappropriate in a
professional setting.

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behaviour and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behaviour.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviour that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an
appointed representative at an online or offline event. Representation of a
project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behaviour may be
reported by contacting the project team at mailto:j.f.j.laros@lumc.nl. The
project team will review and investigate all complaints, and will respond in a
way that it deems appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an
incident. Further details of specific enforcement policies may be posted
separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [http://contributor-covenant.org],
version 1.4, available at
http://contributor-covenant.org/version/1/4 [http://contributor-covenant.org/version/1/4/]

Contributing

Please follow these guidelines if you would like to contribute to the project.

Table of Contents

Please read through these guidelines before you get started:

	Questions & Concerns

	Issues & Bugs

	Feature Requests

	Submitting Pull Requests

	Code Style

Questions & Concerns

If you have any questions about using or developing for this project, reach out
to @jfjlaros or send an email.

Issues & Bugs

Submit an issue [https://github.com/jfjlaros/max7301/issues/new] or pull request [https://github.com/jfjlaros/max7301/compare] with a fix if you find any
bugs in the project. See below for instructions on
sending in pull requests, and be sure to reference the code style
guide first!

When submitting an issue or pull request, make sure you are as detailed as
possible and fill in all answers to questions asked in the templates. For
example, an issue that simply states “X/Y/Z is not working!” will be closed.

Feature Requests

Submit an issue [https://github.com/jfjlaros/max7301/issues/new] to request a new feature. Features fall into one of
two categories:

	Major: Major changes should be discussed with me via email. I am
always open to suggestions and will get back to you as soon as I can!

	Minor: A minor feature can simply be added via a pull request [https://github.com/jfjlaros/max7301/compare].

Submitting Pull Requests

Before you do anything, make sure you check the current list of pull
requests [https://github.com/jfjlaros/max7301/pulls] to ensure you are not duplicating anyone’s work. Then, do the
following:

	Fork the repository and make your changes in a git branch: git checkout -b my-branch base-branch

	Read and follow the code style guidelines.

	Make sure your feature or fix does not break the project! Test thoroughly.

	Commit your changes, and be sure to leave a detailed commit message.

	Push your branch to your forked repo on GitHub: git push origin my-branch

	Submit a pull request [https://github.com/jfjlaros/max7301/compare] and hold tight!

	If any changes are requested by the project maintainers, make them and
follow this process again until the changes are merged in.

Code Style

Please follow the coding style conventions detailed below:

	Arduino style guide [https://www.arduino.cc/en/Reference/StyleGuide].

	Arduino Style Guide for Writing Libraries [https://www.arduino.cc/en/Reference/APIStyleGuide].

 _static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 MAXIM 7301 GPIO port expander

 		
 Introduction

 		
 Installation

 		
 Download

 		
 Latest release

 		
 From source

 		
 Installation

 		
 Arduino IDE

 		
 Ino

 		
 Usage

 		
 Configuration

 		
 Communication

 		
 Shutdown

 		
 Transition detection

 		
 Low level functions

 		
 Example sketch

 		
 Contributors

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

